









Α

## Computing in School in the UK & Ireland: Comparative Study

UKICER 2022

Sue Sentance & Diana Kirby (Raspberry Pi Computing Education Research Centre, University of Cambridge) Keith Quille (Technological University Dublin) Tom Crick (Swansea University) Elizabeth Cole & Nicola Looker (University of Glasgow)

### Overview

- 1. Background
- 2. Research Questions
- 3. Policy and provision across the UK and Ireland
- 4. Teacher survey
- 5. Findings
- 6. What's next?



## Background

- Increased focus on computing in primary and secondary education in recent years
- Major curriculum and system-level developments, including in UK and Ireland
- Development of the subject requires qualified, confident and well-resourced teachers; significant barriers to face here
- Lots of variation between countries highlighted by <u>2021 Brookings Institution report</u>



### **Research Questions**

- **RQ1:** What are the differences in computing education policy and provision across the UK and Ireland?
- RQ2: To what extent do these differences impact on computing teachers' experiences?



## England

- Since 2014, computing mandatory in all schools from age 5
- Broad subject covering digital literacy + elements of computer science
- National Centre for Computing Education established in 2018 with c. £84m DfE investment
- Elective subject called Computer Science available at GCSE (age 14-16) and A Level (age 16-18)



| Population:     | 56.55m    |
|-----------------|-----------|
| Schools:        | 24,413    |
| Students:       | 8,911,851 |
| Teachers (FTE): | 538,312   |



### Scotland

- Computing Science mandatory from age 3-15 as part of broad general education (BGE)
- Curriculum updated in 2016
- Optional courses available at Senior Phase (age 15-18) for National and Higher qualifications
- £1.3m Scottish Government investment in 2022 to transform Computing Science in schools

| 1 |     |  |
|---|-----|--|
|   | , D |  |

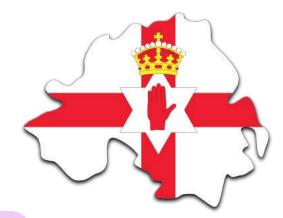
| Pop:            | 5.47m   |
|-----------------|---------|
| Schools:        | 5,099   |
| Students:       | 796,326 |
| Teachers (FTE): | 54,285  |



### Wales

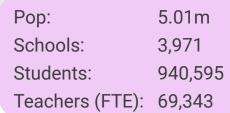
- New Curriculum for Wales (starting 2022) making digital competence a statutory cross-curricular skill alongside literacy and numeracy for age 3-16
- New Science & Technology "area of learning and experience" includes computer science
- Optional GCSE and A Level courses in Digital Technology and Computer Science
- Major national initiatives such as Technocamps supporting CS teacher PD

| Pop:            | 3.17m   |
|-----------------|---------|
| Schools:        | 1,470   |
| Students:       | 470,244 |
| Teachers (FTE): | 24,608  |



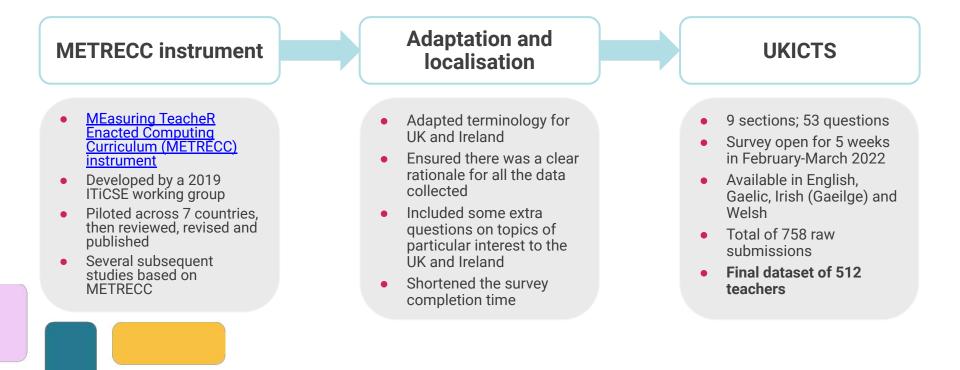

### **Northern Ireland**

- "Using ICT" is one of 3 statutory cross-curricular skills from early years to age 14 i.e. must be included in lessons
- Using ICT incorporates digital skills
- Optional GCSE and A Level courses in Digital Technology
- GCSE students choose between two Digital Technology routes: Multimedia and Programming




| Pop:            | 1.9m    |
|-----------------|---------|
| Schools:        | 1,134   |
| Students:       | 344,860 |
| Teachers (FTE): | 19,001  |




### Ireland

- No mandatory computing in curriculum
- Optional short course in coding at Junior Cycle level (age 12-15)
- Optional Leaving Certificate (age 15-18) Computer Science subject
- Introduction of primary-level computer science curriculum currently under consideration
- Investment in computing teacher PD through National Council for Curriculum and Assessment





### UK and Ireland Computing Teachers Survey (UKICTS)



### **UKICTS** participants

#### Teaching experience:

- 68% teaching for more than 10 years (any subject)
- 32% teaching CS for more than 10 years

#### Teaching level:

- 72% secondary-only
- 21% primary-only
- 6% cross-phase

#### **Country representation**

| Country    | # of<br>teachers | % of teacher<br>(expected %) | # in study | % in study<br>(observed %) | Observed vs<br>expected % |
|------------|------------------|------------------------------|------------|----------------------------|---------------------------|
| England    | 538,312          | 76.28%                       | 379        | 74.46%                     | -1.82%                    |
| Ireland    | 69,343           | 9.83%                        | 46         | 9.04%                      | -0.79%                    |
| N. Ireland | 19,001           | 2.69%                        | 17         | 3.34%                      | +0.65%                    |
| Scotland   | 53,400           | 7.57%                        | 42         | 8.25%                      | +0.68%                    |
| Wales      | 25,614           | 3.63%                        | 25         | 4.91%                      | +1.28%                    |

Population validity with respect to country: Chi-square goodness-of-fit test determined no significant difference between observed and expected values ( $\chi 2 = 3.949$ ; df = 4; p = .413)

### **Topics taught**

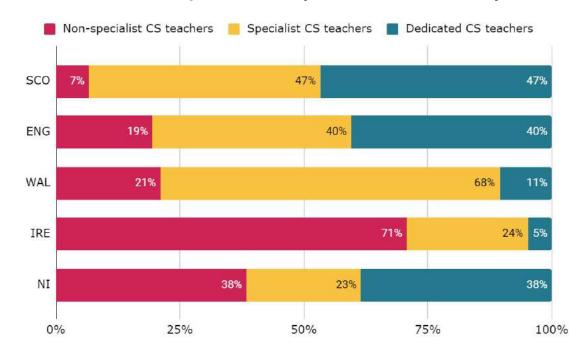
Survey used same list of topics as international METRECC instrument for future comparisons

In Scotland 100% teach programming but lower numbers report teaching Al, networking and data analysis

| Topic           | All  | SCO   | ENG  | WAL  | IRE  | NI   |
|-----------------|------|-------|------|------|------|------|
| Programming     | 96.9 | 100.0 | 97.4 | 92.0 | 93.5 | 94.1 |
| Algorithms      | 94.3 | 95.2  | 97.4 | 92.0 | 80.4 | 64.7 |
| Cybersecurity   | 76.2 | 73.8  | 81.3 | 68.0 | 39.1 | 76.5 |
| Robotics        | 29.9 | 33.3  | 30.6 | 28.0 | 17.4 | 35.3 |
| AI / ML         | 34.2 | 11.9  | 33.8 | 44.0 | 47.8 | 47.1 |
| Networks & DS   | 78.7 | 31.0  | 88.1 | 80.0 | 45.7 | 70.6 |
| Info Systems    | 59.0 | 50.0  | 62.0 | 60.0 | 43.5 | 58.8 |
| Web Systems     | 63.3 | 81.0  | 62.8 | 48.0 | 56.5 | 70.6 |
| Hardware        | 82.6 | 71.4  | 85.5 | 84.0 | 69.6 | 76.5 |
| Ethics          | 72.1 | 47.6  | 75.5 | 76.0 | 65.2 | 64.7 |
| Data rep        | 78.5 | 76.2  | 79.7 | 88.0 | 67.4 | 70.6 |
| Privacy         | 68.0 | 52.4  | 74.4 | 60.0 | 37.0 | 52.9 |
| Databases       | 70.3 | 76.2  | 72.0 | 72.0 | 47.8 | 70.6 |
| Data analysis   | 41.8 | 19.0  | 44.1 | 52.0 | 41.3 | 35.3 |
| CT (explicitly) | 80.5 | 64.3  | 83.6 | 80.0 | 76.1 | 58.8 |
| Design          | 51.4 | 57.1  | 48.3 | 40.0 | 69.6 | 64.7 |

#### Topics taught by country

High % of teachers report that they teach programming across all countries


In the Republic of Ireland, lower % teaching cybersecurity, privacy and databases

Teachers are certainly teaching the breadth of computing, which is the goal of most curricula although expressed in different ways

### **Classroom teaching time**

- Some marked differences between countries in amount of classroom time teachers spent on computing
- 93% of teachers in Scotland reported teaching at least 50% of their time on computing significant difference to Ireland, for example. This aligns to other findings and country policy.

#### Classroom teaching time: country variation at secondary level



### **Computing self-esteem**

# Computer Science Self-Esteem (CSSE) comparison between countries

| Country    | N   | Mean PCA value |
|------------|-----|----------------|
| Scotland   | 46  | -0.5624        |
| England    | 379 | -0.1675        |
| Wales      | 25  | 0.6619         |
| Ireland    | 46  | 1.0355         |
| N. Ireland | 17  | 1.8460         |

- Validated construct for measuring teachers' computing self-esteem
- Responses to 10 statements reduced to one principal component through PCA
- Negative PCA value represents positive CS self-esteem and vice versa
- One-way ANOVA determined a statistically significant difference between country means (*F* (5, 469) = 2.42, *p* = 0.0344)
- Teachers in Scotland and England reported relatively positive CS self-esteem
- Teachers in Wales, Ireland and Northern Ireland reported relatively negative CS self-esteem

Self-esteem reported by teachers is highest where there is either a lot of investment, or a long history of CS

### What's next?

- In summary .... our data to date shows experience largely in line with policy and Ο provision, with a few surprises.
- Other responses still to analyse and report on 0
  - Professional development (take up, experience and barriers) Resources (used and needed)

  - Classroom practice (pedagogy and assessment)
  - Programming languages and tools used
- Changes over time: Ο
  - comparison with 2019 data
  - potential repeat in another 3 years

### For discussion:

What are the interesting RQs from your perspective?

### Thank you!



#### **Contact the team:**

Sue Sentance: <u>ss2600@cam.ac.uk</u> Diana Kirby: <u>diana.kirby@raspberrypi.org</u> Keith Quille: <u>Keith.Quille@tudublin.ie</u> Elizabeth Cole: <u>e.cole.2@research.gla.ac.uk</u> Tom Crick: <u>thomas.crick@swansea.ac.uk</u> Nicola Looker: <u>n.looker.1@research.gla.ac.uk</u>